14 research outputs found

    Unfolding Simulations of Holomyoglobin from Four Mammals: Identification of Intermediates and β-Sheet Formation from Partially Unfolded States

    Get PDF
    Myoglobin (Mb) is a centrally important, widely studied mammalian protein. While much work has investigated multi-step unfolding of apoMb using acid or denaturant, holomyoglobin unfolding is poorly understood despite its biological relevance. We present here the first systematic unfolding simulations of holoMb and the first comparative study of unfolding of protein orthologs from different species (sperm whale, pig, horse, and harbor seal). We also provide new interpretations of experimental mean molecular ellipticities of myoglobin intermediates, notably correcting for random coil and number of helices in intermediates. The simulated holoproteins at 310 K displayed structures and dynamics in agreement with crystal structures (R g ~1.48-1.51 nm, helicity ~75%). At 400 K, heme was not lost, but some helix loss was observed in pig and horse, suggesting that these helices are less stable in terrestrial species. At 500 K, heme was lost within 1.0-3.7 ns. All four proteins displayed exponentially decaying helix structure within 20 ns. The C- and F-helices were lost quickly in all cases. Heme delayed helix loss, and sperm whale myoglobin exhibited highest retention of heme and D/E helices. Persistence of conformation (RMSD), secondary structure, and ellipticity between 2-11 ns was interpreted as intermediates of holoMb unfolding in all four species. The intermediates resemble those of apoMb notably in A and H helices, but differ substantially in the D-, E- and F-helices, which interact with heme. The identified mechanisms cast light on the role of metal/cofactor in poorly understood holoMb unfolding. We also observed β-sheet formation of several myoglobins at 500 K as seen experimentally, occurring after disruption of helices to a partially unfolded, globally disordered state; heme reduced this tendency and sperm-whale did not display any sheet propensity during the simulations

    Electrostatic stabilization in sperm whale and harbor seal myoglobins. Identification of groups primarily responsible for changes in anchoring of the A helix.

    Get PDF
    The compact, largely helical structure of sperm whale and harbor seal myoglobins undergoes an abrupt one-step transition between pH 4.5 and 3.5 as monitored by changes in either the heme Soret band absorbance or circular dichroism probes of secondary structure, for which a modified Tanford-Kirkwood theory provides identification of certain dominant electrostatic interactions responsible for the loss of stability. A similar treatment permits identification of the electrostatic interactions primarily responsible for a process in which the anchoring of the A helix to other parts of the molecule is weakened. This process is detected with both myoglobins, in a pH range approximately 1 unit higher than the onset of the overall unfolding process, through changes in the circular dichroic spectra near 295 nm which correspond to the L1 O-O band of the only two tryptophan residues in these proteins, residues 7 and 14. In each case protonation of certain sites in neighboring parts of the molecule can be identified as producing destabilizing interactions with components of the A helix, particularly with lysine 6
    corecore